References#

ALST08

S. Adav, D. J. Lee, K. Y. Show, and J. H. Tay. Aerobic granular sludge: Recent advances. Biotechnol. Adv., 26(5):411–423, 2008. doi:10.1016/j.biotechadv.2008.05.002.

AL14

E. Adern and W. T. Lockett. The oxidation of sewage without the aid of filters. J. Soc. Chem. Ind., 33(10):523–539, 1914. doi:10.1002/jctb.5000331005.

AKP+10

Joon Ho Ahn, Sungpyo Kim, Hongkeun Park, Brian Rahm, Krishna Pagilla, and Kartik Chandran. N2O emissions from activated sludge processes, 2008-2009: Results of a national monitoring survey in the united states. Environ. Sci. Technol., 44(12):4505–4511, 2010. doi:10.1021/es903845y.

AWS+19

M. Ali, Z. Wang, K. W. Salam, A. R. Hari, M. Pronk, M. C. M. van Loosdrecht, and P. E. Saikaly. Importance of species sorting and immigration on the bacterial assembly of different-sized aggregates in a full-scale Aerobic granular sludge plant. Environ. Sci. Technol., 53(14):8291–8301, 2019. doi:10.1021/acs.est.8b07303.

AZN12

M. Andalib, J. Zhu, and G. Nakhla. A new definition of bed expansion index and voidage for fluidized biofilm-coated particles. Chem. Eng. J., 189-190:244–249, 2012. doi:10.1016/j.cej.2012.02.065.

AH90

E. Arvin and P. Harremoes. Biofilm Reactor Performance. Water Sci. Technol., 22(112):171–192, 1990. doi:10.2166/wst.1990.0145.

BvDP+21

J. E. Baeten, E. J. H. van Dijk, M. Pronk, M. C. M. van Loosdrecht, and E. I. P. Volcke. Potential of off-gas analyses for sequentially operated reactors demonstrated on full-scale aerobic granular sludge technology. Sci. Total Environ., 787:147651, 2021. doi:10.1016/j.scitotenv.2021.147651.

BBS+19

Janis E. Baeten, Damien J. Batstone, Oliver J. Schraa, Mark C. M. van Loosdrecht, and Eveline I. P. Volcke. Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors - A review. Water Res., 149:322–341, 2019. doi:10.1016/j.watres.2018.11.026.

BvLV18

Janis E. Baeten, Mark C. M. van Loosdrecht, and Eveline I. P. Volcke. Modelling aerobic granular sludge reactors through apparent half-saturation coefficients. Water Res., 146:134–145, dec 2018. doi:10.1016/J.WATRES.2018.09.025.

BTNH04

T. E. Baldock, M. R. Tomkins, P. Nielsen, and M. G. Hughes. Settling velocity of sediments at high concentrations. Coast. Eng., 51(1):91–100, 2004. doi:10.1016/j.coastaleng.2003.12.004.

BPK+11

J. P. Bassin, M. Pronk, R. Kraan, R. Kleerebezem, and M. C. M. van Loosdrecht. Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules. Water Res., 45(16):5257–5265, 2011. doi:10.1016/j.watres.2011.07.034.

BvdH90

H. H. Beeftink and J. C. van den Heuvel. Bacterial aggregates of various and varying size and density: a structured model for biomass retention. Chem. Eng. J., 44(1):B1–B13, 1990. doi:10.1016/0300-9467(90)80055-H.

BvanLoosdrechtH02

J. J. Beun, M. C. M. van Loosdrecht, and J. J. Heijnen. Aerobic granulation in a sequencing batch airlift reactor. Water Res., 36(3):702–712, 2002. doi:10.1016/S0043-1354(01)00250-0.

CLTN11

F. Y. Chen, Y. Q. Liu, J. H. Tay, and P. Ning. Operational strategies for nitrogen removal in granular sequencing batch reactor. J. Hazard. Mater., 189(1-2):342–348, 2011. doi:10.1016/j.jhazmat.2011.02.041.

CvanLoosdrechtEB20

G. H. Chen, M. C. M. van Loosdrecht, G. A. Ekama, and D. Brdjanovic. Biological Wastewater Treatment: Principles, Modeling and Design. IWA Publishing, 2020. ISBN 9781789060355 1789060354. doi:10.2166/9781789060362.

CofreCVH+18

C Cofré, J L Campos, D Valenzuela-Heredia, J P Pavissich, N Camus, M Belmonte, A Pedrouso, P Carrera, A Mosquera-Corral, and A. Val del Río. Novel system configuration with activated sludge like-geometry to develop aerobic granular biomass under continuous flow. Bioresour. Technol., 267:778–781, 2018. doi:10.1016/j.biortech.2018.07.146.

CLA+19

M. Conthe, P. Lycus, M. Arntzen, A. Ramos da Silva, A. Frostegård, L. R. Bakken, R. Kleerebezem, and M. C. M. van Loosdrecht. Denitrification as an N2O sink. Water Res., 151:381–387, 2019. doi:10.1016/j.watres.2018.11.087.

CRSHribervsek19

Y. Cui, J. Ravnik, P. Steinmann, and M. Hriberšek. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res., 158:159–170, 2019. doi:10.1016/j.watres.2019.04.017.

Cus09

E. L. Cussler. Diffusion: Mass Transfer in Fluid Systems. Cambridge Series in Chemical Engineering. Cambridge University Press, Cambridge, 3 edition, 2009. ISBN 978-0-521-87121-1. doi:10.1017/CBO9780511805134.

DvVvD+15

Matthijs R. J. Daelman, Ellen M. van Voorthuizen, Udo G. J. M. van Dongen, Eveline I. P. Volcke, and Mark C. M. van Loosdrecht. Seasonal and diurnal variability of N2O emissions from a full-scale municipal wastewater treatment plant. Sci. Total Environ., 536:1–11, 2015. doi:10.1016/j.scitotenv.2015.06.122.

Dag00

L. Dagdug. A theoretical framework for the Vogel-Fulcher-Tammann equation for covalent network glasses derived by the stochastic matrix method. J. Phys. Condens. Matter, 12(46):9573–9589, 2000. doi:10.1088/0953-8984/12/46/305.

dGvDvLP20

Danny R. de Graaff, Edward J. H. van Dijk, Mark C. M. van Loosdrecht, and Mario Pronk. Strength characterization of full-scale aerobic granular sludge. Environ. Technol., 41(13):1637–1647, 2020. doi:10.1080/09593330.2018.1543357.

dKKvL07

M. K. de Kreuk, N. Kishida, and M. C. M. van Loosdrecht. Aerobic granular sludge - State of the art. Water Sci. Technol., 55(8-9):75–81, 2007. doi:10.2166/wst.2007.244.

dKPvL05

M. K. de Kreuk, M. Pronk, and M. C. M. van Loosdrecht. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res., 39(18):4476–4484, 2005. doi:10.1016/j.watres.2005.08.031.

dKvanLoosdrecht04

M. K. de Kreuk and M. C. M. van Loosdrecht. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol., 49(11-12):9–17, 2004. doi:10.2166/wst.2004.0792.

DD98

S. Degaleesan and M. P. Dudukovic. Liquid backmixing in bubble columns and the axial dispersion coefficient. AIChE J., 44(11):2369–2378, 1998. doi:10.1002/aic.690441105.

DVC+12

J. Desloover, S. E. Vlaeminck, P. Clauwaert, W. Verstraete, and N. Boon. Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr. Opin. Biotechnol., 23(3):474–482, 2012. doi:10.1016/j.copbio.2011.12.030.

DO18

T. R. Devlin and J. A. Oleszkiewicz. Cultivation of aerobic granular sludge in continuous flow under various selective pressure. Bioresour. Technol., 253:281–287, 2018. doi:10.1016/j.biortech.2018.01.056.

DAB+19

P. Dold, B. Alexander, G. Burger, M. Fairlamb, D. Conidi, C. Bye, and W. Du. Modeling full-scale granular sludge sequencing tank performance. 91st Annu. Water Environ. Fed. Tech. Exhib. Conf. WEFTEC 2018, pages 3813–3826, 2019. doi:10.2175/193864718825135937.

Ein05

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322(8):549–560, jan 1905. doi:10.1002/ANDP.19053220806.

EW01

T. Etterer and P. A. Wilderer. Generation and properties of aerobic granular sludge. Water Sci. Technol., 43(3):19–26, feb 2001. doi:10.2166/wst.2001.0114.

FYW60

Liang Tseng Fan, Yung Chia Yang, and Chin Yung Wen. Mass transfer in semifluidized beds for solid-liquid system. AIChE J., 6(3):482–487, 1960. doi:10.1002/aic.690060327.

FdHYL10

Jeffrey Foley, David de Haas, Zhiguo Yuan, and Paul Lant. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res., 44(3):831–844, 2010. doi:10.1016/j.watres.2009.10.033.

GLLW11

D. Gao, L. Liu, H. Liang, and W. M. Wu. Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment. Crit. Rev. Biotechnol., 31(2):137–152, 2011. doi:10.3109/07388551.2010.497961.

GvLP+16

A. Giesen, M. C. M. van Loosdrecht, M. Pronk, S. Robertson, and A. Thompson. Aerobic granular biomass technology: Recent performance data, lessons learnt and retrofitting conventional treatment infrastructure. Volume 3. Water Environment Federation, 2016. ISBN 9781510870475. doi:10.2175/193864716819707139.

GdeBruinNvandRoest13

A. Giesen, L. M. M. de Bruin, R. P. Niermans, and H. F. van der Roest. Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Pract. Technol., 8(1):47–54, 2013. doi:10.2166/wpt.2013.007.

Gin12

Corrado Gini. Variabilita e mutabilita contributo allo studio delle distribuzioni e delle relazioni statistiche. Tipogr. di P. Cuppini, Bologna, 1912.

GVK+20

Wenzel Gruber, Kris Villez, Marco Kipf, Pascal Wunderlin, Hansruedi Siegrist, Liliane Vogt, and Adriano Joss. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy. Sci. Total Environ., 699:134157, 2020. doi:10.1016/j.scitotenv.2019.134157.

HvLP22

Viktor A. Haaksman, Mark C. M. van Loosdrecht, and Mario Pronk. Influence of anaerobic contact regime on substrate distribution. unpublished, 2022.

HMW+90

J. J. Heijnen, A. Mulder, R. Weltevrede, P. H. Hols, and H. L. J. M. van Leeuwen. Large-scale anaerobic/aerobic treatment of complex industrial wastewater using immobilized biomass in fluidized bed and air-lift suspension reactors. Chem. Eng. Technol., 13(1):202–208, 1990. doi:10.1002/ceat.270130127.

HvL98

J. J. Heijnen and M. C. M. van Loosdrecht. Method for acquiring grain-shaped growth of a microorganism in a reactor. 1998.

HvLM+93

J. J. Heijnen, M. C. M. van Loosdrecht, R. Mulder, R. Weltevrede, and A. Mulder. Development and scale-up of an aerobic biofilm air-lift suspension reactor. Water Sci. Technol., 27(5-6):253–261, 1993. doi:10.2166/wst.1993.0505.

HDGdlS93

M. Henze, R. Dupont, P. Grau, and A. de la Sota. Rising sludge in secondary settlers due to denitrification. Water Res., 27(2):231–236, feb 1993. doi:10.1016/0043-1354(93)90080-2.

HvLEB08

M. Henze, M. C. M. van Loosdrecht, G.A. Ekama, and D. Brdjanovic. Biological Wastewater Treatment: Principles, Modelling and Design. IWA Pub., London, 2008. ISBN 1843391880 9781843391883. doi:10.2166/9781780401867.

Hen92

Mogens Henze. Characterization of Wastewater for Modelling of Activated Sludge Processes. Water Sci. Technol., 25(6):1–15, mar 1992. doi:10.2166/WST.1992.0110.

HGM+99

Mogens Henze, Willi Gujer, Takahashi Mino, Tomonori Matsuo, Mark C. Wentzel, Gerrit R. Marais, and Mark C. M. van Loosdrecht. Activated Sludge Model No.2d, ASM2D. Water Sci. Technol., 39(1):165–182, jan 1999. doi:10.2166/WST.1999.0036.

Hig35

R. Higbie. The rate of absorption of a pure gas into still liquid during short periods of exposure. Inst. Chem. Eng., 35(2):36–60, 1935.

IL21

Oliver Terna Iorhemen and Yang Liu. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J. Water Process Eng., 39:101709, feb 2021. doi:10.1016/j.jwpe.2020.101709.

JSK19

Lydia Jahn, Karl Svardal, and Jörg Krampe. Nitrous oxide emissions from aerobic granular sludge. Water Sci. Technol., 80(7):1304–1314, 2019. doi:10.2166/wst.2019.378.

Jen92

D. Jenkins. Towards a comprehensive model of activated sludge bulking and foaming. Water Sci. Technol., 25(6):215–230, 1992. doi:0273-12231/92.

JW14

D. Jenkins and J. Wanner. Activated Sludge – 100 Years and Counting. apr 2014. doi:10.2166/9781780404943.

KTK+09

M. J. Kampschreur, H. Temmink, R. Kleerebezem, M. S. M. Jetten, and M. C. M. van Loosdrecht. Nitrous oxide emission during wastewater treatment. Water Res., 43(17):4093–4103, 2009. doi:10.1016/j.watres.2009.03.001.

KvdSW+08

Marlies J. Kampschreur, Wouter R.L. van der Star, Hubert A. Wielders, Jan Willem Mulder, Mike S.M. Jetten, and Mark C.M. van Loosdrecht. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res., 42(3):812–826, feb 2008. doi:10.1016/J.WATRES.2007.08.022.

KBW18

T. R. Kent, C. B. Bott, and Z. W. Wang. State of the art of aerobic granulation in continuous flow bioreactors. Biotechnol. Adv., 36(4):1139–1166, jul 2018. doi:10.1016/j.biotechadv.2018.03.015.

KML+20

N. K. Kim, N. Mao, R. Lin, D. Bhattacharyya, M. C. M. van Loosdrecht, and Y. M. Lin. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Res., 170:115344, mar 2020. doi:10.1016/J.WATRES.2019.115344.

KMvLH96

T. Kuba, E. Murnleitner, M. C. M. van Loosdrecht, and J. J. Heijnen. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng., 52(6):685–695, 1996. doi:10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K.

LAR+19

M. Layer, A. Adler, E. Reynaert, A. Hernandez, M. Pagni, E. Morgenroth, C. Holliger, and N. Derlon. Organic substrate diffusibility governs microbial community composition, nutrient removal performance and kinetics of granulation of aerobic granular sludge. Water Res. X, 4:100033, 2019. doi:10.1016/j.wroa.2019.100033.

LBR+20

M. Layer, K. Bock, F. Ranzinger, H. Horn, E. Morgenroth, and N. Derlon. Particulate substrate retention in plug-flow and fully-mixed conditions during operation of aerobic granular sludge systems. Water Res. X, 9:100075, dec 2020. doi:10.1016/J.WROA.2020.100075.

LVH+20

Manuel Layer, Mercedes Garcia Villodres, Antonio Hernandez, Eva Reynaert, Eberhard Morgenroth, and Nicolas Derlon. Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications. Water Res. X, 7:100048, may 2020. doi:10.1016/j.wroa.2020.100048.

LJT75

G. Lettinga, A. G. N. Jansen, and P. Terpstra. Anaerobe zuivering van bietsuikerafvalwater. H2O, pages 530–536, 1975.

LL09

An Jie Li and Xiao Yan Li. Selective sludge discharge as the determining factor in SBR aerobic granulation: Numerical modelling and experimental verification. Water Res., 43(14):3387–3396, aug 2009. doi:10.1016/J.WATRES.2009.05.004.

LKKW08

Z. H. Li, T. Kuba, T. Kusuda, and X. C. Wang. A comparative study on aerobic granular sludge and effluent suspended solids in a sequence batch reactor. Environ. Eng. Sci., 25(4):577–584, 2008. doi:10.1089/ees.2007.0091.

LSL+10

Xiao Meng Liu, Guo Ping Sheng, Hong Wei Luo, Feng Zhang, Shi Jie Yuan, Juan Xu, Raymond J. Zeng, Jian Guang Wu, and Han Qing Yu. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ. Sci. Technol., 44(11):4355–4360, jun 2010. doi:10.1021/es9016766.

LWL+05

Y. Liu, W. W. Wang, Y. Q. Liu, L. Qin, and J. H. Tay. A generalized model for settling velocity of aerobic granular sludge. Biotechnol. Prog., 21(2):621–626, 2005. doi:10.1021/bp049674u.

LT02

Yu Liu and Joo Hwa Tay. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res., 36(7):1653–1665, 2002. doi:10.1016/S0043-1354(01)00379-7.

LMH14

Samuel Lochmatter, Julien Maillard, and Christof Holliger. Nitrogen removal over nitrite by aeration control in aerobic granular sludge sequencing batch reactors. Int. J. Environ. Res. Public Health, 11(7):6955–78, jul 2014. doi:10.3390/ijerph110706955.

Lor05

M O Lorenz. Methods of Measuring the Concentration of Wealth. Publ. Am. Stat. Assoc., 9(70):209–219, jun 1905. doi:10.1080/15225437.1905.10503443.

MHvanLoosdrecht04

A. M. P. Martins, J. J. Heijnen, and M. C. M. van Loosdrecht. Bulking Sludge in Biological Nutrient Removal Systems. Biotechnol. Bioeng., 86(2):125–135, apr 2004. doi:10.1002/bit.20029.

MIW04

B. S. McSwain, R. L. Irvine, and P. A. Wilderer. The influence of settling time on the formation of aerobic granules. Water Sci. Technol., 50(10):195–202, nov 2004. doi:10.2166/WST.2004.0643.

MSvanLoosdrecht+97

E. Morgenroth, T. Sherden, M. C. M. van Loosdrecht, J. J. Heijnen, and P. A. Wilderer. Aerobic granular sludge in a sequencing batch reactor. Water Res., 31(12):3191–3194, 1997. doi:10.1016/S0043-1354(97)00216-9.

MCdKHvanLoosdrecht05

A. Mosquera-Corral, M. K. de Kreuk, J. J. Heijnen, and M. C. M. van Loosdrecht. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res., 39(12):2676–2686, 2005. doi:10.1016/j.watres.2005.04.065.

MS87

L. T. Mulcahy and W. K. Shieh. Fluidization and reactor biomass characteristics of the denitrification fluidized bed biofilm reactor. Water Res., 21(4):451–458, 1987. doi:10.1016/0043-1354(87)90193-X.

NXL+09

B. J. Ni, W. M. Xie, S. G. Liu, H. Q. Yu, Y. Z. Wang, G. Wang, and X. L. Dai. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res., 43(3):751–761, feb 2009. doi:10.1016/j.watres.2008.11.009.

NY10

B. J. Ni and H. Q. Yu. Mathematical modeling of aerobic granular sludge: A review. Biotechnol. Adv., 28(6):895–909, nov 2010. doi:10.1016/J.BIOTECHADV.2010.08.004.

NO79

H. A. Nicholls and D. W. Osborn. Bacterial stress: Prerequisite for biological removal of phosphorus. J. Water Pollut. Control Fed., 51(3 I):557–569, 1979.

NvanLoosdrechtDiFeliceR99

C. Nicolella, M. C. M. van Loosdrecht, R. Di Felice, and M. Rovatti. Terminal settling velocity and bed-expansion characteristics of biofilm coated particles. Biotechnol. Bioeng., 62(1):62–70, jan 1999. doi:10.1002/(SICI)1097-0290(19990105)62:1<62::AID-BIT8>3.0.CO;2-U.

ORW94

H. Odegaard, B. Rusten, and T. Westrum. A new moving bed biofilm reactor - applications and results. Water Sci. Technol., 29(10-11):157–165, 1994. doi:10.2166/wst.1994.0757.

PBF+96

D. S. Parker, R. Butler, R. Finger, R. Fisher, W. Fox, W. Kido, S. Merrill, G. Newman, R. Pope, J. Slapper, and E. Wahlberg. Design and operations experience with flocculator-clarifiers in large plants. Water Sci. Technol., 33(12):163–170, jan 1996. doi:10.1016/0273-1223(96)00470-2.

PKW01

D. S. Parker, D. J. Kinnear, and E. J. Wahlberg. Review of Folklore in Design and Operation of Secondary Clarifiers. J. Environ. Eng., 127(6):476–484, 2001. doi:10.1061/(ASCE)0733-9372(2001)127:6(476).

PT85

V. S. Patwardhan and C. Tien. Sedimentation and liquid fluidization of solid particles of different sizes and densities. Chem. Eng. Sci., 40(7):1051–1060, 1985. doi:10.1016/0009-2509(85)85062-4.

PGM97

R. H. Perry, D. W. Green, and J. O. Maloney. Perry's Chemical Engineers' Handbook. McGraw-Hill, New York, 7th edition, 1997.

PvanLoosdrechtH98

C. Picioreanu, M. C. M. van Loosdrecht, and J. J. Heijnen. Mathematical modeling of biofilm structure with a hybrid differential- discrete cellular automaton approach. Biotechnol. Bioeng., 58(1):101–116, 1998. doi:10.1002/(SICI)1097-0290(19980405)58:1<101::AID-BIT11>3.0.CO;2-M.

PvanLoosdrechtH00a

Cristian Picioreanu, Mark C M van Loosdrecht, and Joseph J Heijnen. A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng, 68(4):355–369, 2000. doi:10.1002/(SICI)1097-0290(20000520)68.

PvanLoosdrechtH00b

Cristian Picioreanu, Mark C. M. van Loosdrecht, and Joseph J. Heijnen. Effect of Diffusive and Convective Substrate Transport on Biofilm Structure Formation: A Two-Dimensional Modeling Study. Biotechnol. Bioeng., 69(5):504–515, 2000. doi:10.1002/1097-0290.

PWY11

Maite Pijuan, Ursula Werner, and Zhiguo Yuan. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Water Res., 45(16):5075–5083, oct 2011. doi:10.1016/J.WATRES.2011.07.009.

Pro16

M. Pronk. Aerobic Granular Sludge - Effect of Substrate on Granule Formation. PhD thesis, TU Delft, 2016. doi:https://doi.org/10.4233/uuid:5ea870b3-671e-4b02-b202-5255d5b58da2.

PAAz+15

M. Pronk, B. Abbas, S. H. K. Al-zuhairy, R. Kraan, R. Kleerebezem, and M. C. M. van Loosdrecht. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Appl. Microbiol. Biotechnol., 99(12):5257–5268, jun 2015. doi:10.1007/s00253-014-6358-3.

PGT+17

M. Pronk, A. Giesen, A. Thompson, S. Robertson, and M. C. M. van Loosdrecht. Aerobic granular biomass technology: advancements in design, applications and further developments. Water Pract. Technol., 12(4):987–996, dec 2017. doi:10.2166/WPT.2017.101.

PvDvL20

M. Pronk, E. J. H. van Dijk, and M. C. M. van Loosdrecht. Aerobic granular sludge. In Guanghao Chen, George A Ekama, Mark C M van Loosdrecht, and Damir Brdjanovic, editors, Biol. Wastewater Treat. Princ. Model. Des., chapter 11, pages 497–516. IWA Publishing, jul 2020. doi:10.2166/9781789060362_0497.

PdeKreukdB+15

M. Pronk, M. K. de Kreuk, L. M. M. de Bruin, P. Kamminga, R. Kleerebezem, and M. C. M. van Loosdrecht. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res., 84:207–217, nov 2015. doi:10.1016/j.watres.2015.07.011.

PerezPvanLoosdrecht05

J. Pérez, C. Picioreanu, and M. C. M. van Loosdrecht. Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations. Water Res., 39(7):1311–1323, apr 2005. doi:10.1016/j.watres.2004.12.020.

QTL04

L. Qin, J. H. Tay, and Y. Liu. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem., 39(5):579–584, 2004. doi:10.1016/S0032-9592(03)00125-0.

RZ54

J. F. Richardson and W. N. Zaki. Sedimentation and fluidisation: Part I. Chem. Eng. Res. Des., 32(1 SUPPL.):S82—–S100, 1954. doi:10.1016/s0263-8762(97)80006-8.

RocktaschelKH+13

T. Rocktäschel, C. Klarmann, B. Helmreich, J. Ochoa, P. Boisson, K. H. Sørensen, and H. Horn. Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed. Water Res., 47(17):6423–6431, 2013. doi:10.1016/j.watres.2013.08.014.

RocktaschelKO+15

T. Rocktäschel, C. Klarmann, J. Ochoa, P. Boisson, K. Sørensen, and H. Horn. Influence of the granulation grade on the concentration of suspended solids in the effluent of a pilot scale sequencing batch reactor operated with aerobic granular sludge. Sep. Purif. Technol., 142:234–241, 2015. doi:10.1016/j.seppur.2015.01.013.

RCAM+15

A. Rodriguez-Caballero, I. Aymerich, R. Marques, M. Poch, and M. Pijuan. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res., 71:1–10, 2015. doi:10.1016/j.watres.2014.12.032.

SH96

M. Sarioglu and N. Horan. An equation for the empirical design of anoxic zones used to eliminate rising sludges at nitrifying activated sludge plants. Water Sci. Technol., 33(3):185–194, 1996. doi:10.1016/0273-1223(96)00312-5.

SvdMvLH94

G. J. F. Smolders, J. van der Meij, M. C. M. van Loosdrecht, and J. J. Heijnen. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnol. Bioeng., 43(6):461–470, mar 1994. doi:10.1002/bit.260430605.

SMMQ07

S. Solomon, M. Manning, M. Marquis, and D. Qin. Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Volume 4. Cambridge university press, 2007. ISBN 0521705967.

TakacsPN91

I. Takács, G. G. Patry, and D. Nolasco. A dynamic model of the clarification-thickening process. Water Res., 25(10):1263–1271, oct 1991. doi:10.1016/0043-1354(91)90066-Y.

TLL01

J. H. Tay, Q. S. Liu, and Y. Liu. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotechnol. 2001 571, 57(1):227–233, 2001. doi:10.1007/S002530100766.

TBL+17

E. Torfs, S. Balemans, F. Locatelli, S. Diehl, R. Bürger, J. Laurent, P. François, and I. Nopens. On constitutive functions for hindered settling velocity in 1-D settler models: Selection of appropriate model structure. Water Res., 110:38–47, 2017. doi:10.1016/j.watres.2016.11.067.

ToraBCO11

J. A. Torà, J. A. Baeza, J. Carrera, and J. A. Oleszkiewicz. Denitritation of a high-strength nitrite wastewater in a sequencing batch reactor using different organic carbon sources. Chem. Eng. J., 172(2-3):994–998, 2011. doi:10.1016/J.CEJ.2011.07.013.

vdBvLdK21

Lenno van den Berg, Mark C M van Loosdrecht, and Merle K de Kreuk. How to measure diffusion coefficients in biofilms: A critical analysis. Biotechnol. Bioeng., 118(3):1273–1285, 2021. doi:10.1002/bit.27650.

vdRdBGC11

H. F. van der Roest, L. M. M. de Bruin, G. Gademan, and F. Coelho. Towards sustainable waste water treatment with Dutch Nereda® technology. Water Pract. Technol., 6(3):1–2, 2011. doi:10.2166/wpt.2011.059.

vdRdBvDU12

H. F. van der Roest, L. M. M. de Bruin, Ruud van Dalen, and Cora Uijterlinde. Maakt Nereda-installatie Epe hooggespannen verwachtingen waar? Vakbl. H2O, pages 30–34, 2012.

vDPvL18

E. J. H. van Dijk, M. Pronk, and M. C. M. van Loosdrecht. Controlling effluent suspended solids in the aerobic granular sludge process. Water Res., 147:50–59, dec 2018. doi:10.1016/j.watres.2018.09.052.

vDPvL20

E. J. H. van Dijk, M. Pronk, and M. C. M. van Loosdrecht. A settling model for full-scale aerobic granular sludge. Water Res., 186:116135, 2020. doi:10.1016/j.watres.2020.116135.

vDvLP21

E. J. H. van Dijk, M. C. M. van Loosdrecht, and M. Pronk. Nitrous oxide emission from full-scale municipal aerobic granular sludge. Water Res., 198:117159, jun 2021. doi:10.1016/j.watres.2021.117159.

vDvSO20

E. J. H. van Dijk, K. M. van Schagen, and A. T. Oosterhoff. Controlled Simultaneous Nitrification and Denitrification in Wastewater Treatment. 2020.

vDHvLP22

Edward J. H. van Dijk, Viktor A. Haaksman, Mark C. M. van Loosdrecht, and Mario Pronk. On the mechanisms for aerobic granulation - model based evaluation. Water Res., 216:118365, jun 2022. doi:10.1016/j.watres.2022.118365.

vLEG+95

M. C. M. van Loosdrecht, D. Eikelboom, A. Gjaltema, A. Mulder, L. Tijhuis, and J. J. Heijnen. Biofilm Structures. Water Sci. Technol., 32(8):35–43, 1995. doi:https://doi-org.tudelft.idm.oclc.org/10.2166/wst.1995.0258.

vantH84

M. J. H. van't Hoff. Etudes de dynamique chimique. Volume 3. F. Muller & Co., Amsterdam, 1884. doi:10.1002/recl.18840031003.

VMS+19

V. Vasilaki, T. M. Massara, P. Stanchev, F. Fatone, and E. Katsou. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: A critical review. Water Res., 161:392–412, 2019. doi:10.1016/j.watres.2019.04.022.

Ves68

P. A. Vesilind. Design of prototype thickeners from batch settling tests. Water Sew. Work., 115(7):302–307, 1968.

VZML97

Z.C. Vitasovic, S. Zhou, J.A. McCorquodale, and K. Lingren. Secondary clarifier analysis using data from the Clarifier Research Technical Committee protocol. Water Environ. Res., 69(5):999–1007, 1997. doi:10.2175/106143097X125696.

WST+17

Shuo Wang, Wenxin Shi, Tang Tang, Yuying Wang, Liling Zhi, Jinze Lv, and Ji Li. Function of quorum sensing and cell signaling in the formation of aerobic granular sludge. Rev. Environ. Sci. Biotechnol., 16(1):1–13, 2017. doi:10.1007/s11157-017-9420-7.

WR96

O. Wanner and P. Reichert. Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng., 49(2):172–184, 1996. doi:10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N.

WSNguyenQuoc+20

Stephany P. Wei, H. David Stensel, Bao Nguyen Quoc, David A. Stahl, Xiaowu Huang, Po Heng Lee, and Mari K. H. Winkler. Flocs in disguise? High granule abundance found in continuous-flow activated sludge treatment plants. Water Res., 179:115865, jul 2020. doi:10.1016/J.WATRES.2020.115865.

WBK+12

M. K. H. Winkler, J. P. Bassin, R. Kleerebezem, R. G. J. M. van der Lans, and M. C. M. van Loosdrecht. Temperature and salt effects on settling velocity in granular sludge technology. Water Res., 46(12):3897–3902, aug 2012. doi:10.1016/j.watres.2012.04.034.

WKS+13

M. K. H. Winkler, R. Kleerebezem, M. Strous, K. Chandran, and M. C. M. van Loosdrecht. Factors influencing the density of aerobic granular sludge. Appl. Microbiol. Biotechnol., 97(16):7459–7468, 2013. doi:10.1007/s00253-012-4459-4.

WKdeBruin+13

M. K. H. Winkler, R. Kleerebezem, L. M. M. de Bruin, P. J. T. Verheijen, B. Abbas, J. Habermacher, and M. C. M. van Loosdrecht. Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl. Microbiol. Biotechnol., 97(16):7447–7458, 2013. doi:10.1007/s00253-012-4472-7.

WMH+18

Mari Karoliina Henriikka Winkler, Christophe Meunier, Olivier Henriet, Jacques Mahillon, María Eugenia Suárez-Ojeda, Guido Del Moro, Marco De Sanctis, Claudio Di Iaconi, and David Gregory Weissbrodt. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem. Eng. J., 336:489–502, mar 2018. doi:10.1016/J.CEJ.2017.12.026.

WdlRD20

Jun Wu, Francis L. de los Reyes, and Joel J Ducoste. Modeling cell aggregate morphology during aerobic granulation in activated sludge processes reveals the combined effect of substrate and shear. Water Res., 170:115384, 2020. doi:10.1016/j.watres.2019.115384.

WMJ+12

Pascal Wunderlin, Joachim Mohn, Adriano Joss, Lukas Emmenegger, and Hansruedi Siegrist. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res., 46(4):1027–1037, 2012. doi:10.1016/j.watres.2011.11.080.

XdeKreukPvanLoosdrecht07

J. B. Xavier, M. K. de Kreuk, C. Picioreanu, and M. C. M. van Loosdrecht. Multi-scale individual-based model of microbial and byconversion dynamics in aerobic granular sludge. Environ. Sci. Technol., 41(18):6410–6417, sep 2007. doi:10.1021/es070264m.

YLTL04

S. F. Yang, Q. S. Liu, J. H. Tay, and Y. Liu. Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett. Appl. Microbiol., 38(2):106–112, feb 2004. doi:10.1111/J.1472-765X.2003.01452.X.

Yan03

W. C. Yang. Handbook of Fluidization and Fluid-Particle Systems. CRC Press, 2003. doi:10.1201/9780203912744.

ZLC+15

Fang Zhang, Ping Li, Mengsi Chen, Jinhua Wu, Nengwu Zhu, Pingxiao Wu, Penchi Chiang, and Zhiqiang Hu. Effect of operational modes on nitrogen removal and nitrous oxide emission in the process of simultaneous nitrification and denitrification. Chem. Eng. J., 280:549–557, 2015. doi:10.1016/j.cej.2015.06.016.

ZMV92

S. Zhou, J. A. McCorquodale, and Z. Vitasovic. Influences of Density on Circular Clarifiers with Baffles. J. Environ. Eng., 118(6):829–847, 1992. doi:10.1061/(ASCE)0733-9372(1992)118:6(829).

ZTL+18

J. Zou, Y. Tao, J. Li, S. Wu, and Y. Ni. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater. Bioresour. Technol., 247:776–783, 2018. doi:10.1016/j.biortech.2017.09.088.

deKreukHvanLoosdrecht05

M. K. de Kreuk, J. J. Heijnen, and M. C. M. van Loosdrecht. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng., 90(6):761–769, 2005. doi:10.1002/bit.20470.

deKreukPH+07

M. K. de Kreuk, C. Picioreanu, M. Hosseini, J. B. Xavier, and M. C. M. van Loosdrecht. Kinetic model of a granular sludge SBR: Influences on nutrient removal. Biotechnol. Bioeng., 97(4):801–815, jul 2007. doi:10.1002/bit.21196.

DiFelice95

R. Di Felice. Hydrodynamics of liquid fluidisation. Chem. Eng. Sci., 50(8):1213–1245, apr 1995. doi:10.1016/0009-2509(95)98838-6.

DiFelice96

R. Di Felice. A relationship for the wall effect on the settling velocity of a sphere at any flow regime. Int. J. Multiph. Flow, 22(3):527–533, 1996. doi:10.1016/0301-9322(96)00004-3.

MetcalfEddy13

Metcalf & Eddy. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill, 5th edition, 2013. ISBN 9780073401188.

NorAnuarUvLdK07

A. Nor Anuar, Z. Ujang, M. C. M. van Loosdrecht, and M. K. de Kreuk. Settling behaviour of aerobic granular sludge. Water Sci. Technol., 56(7):55–63, 2007. doi:10.2166/wst.2007.671.

TojaOrtegaPdK21

Sara Toja Ortega, Mario Pronk, and Merle K. de Kreuk. Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: enzymatic activity determined in different sludge fractions. Appl. Microbiol. Biotechnol., 105(14-15):6073–6086, aug 2021. doi:10.1007/S00253-021-11443-3/FIGURES/5.

vanLoosdrechtHE+02

M. C. M. van Loosdrecht, J. J. Heijnen, H. Eberl, J. Kreft, and C. Picioreanu. Mathematical modelling of biofilm structures. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., 81(1-4):245–256, 2002. doi:10.1023/A:1020527020464.